УАЗБУКА, почти все об автомобилях УАЗАвтомобили УАЗ: Клуб УАЗоводов, Фотогалерея, Форум УАЗ, библиотека, каталог УАЗ
Автовентури
УАЗБУКА, почти все об автомобилях УАЗ
 

[ Двигатель ]

Турбомотор - что это такое.

апрель 2018г.

Изначально двигатели были атмосферными, но человечеству всегда хотелось иметь более мощный двигатель .
Повысить эффективность ДВС можно несколькими способами: увеличить размер камеры сгорания, повысить степень сжатия, повысить обороты двигателя, улучшить наполняемость цилиндров за счет оптимизации впуска/выпуска.

Как правило большинство этих решений связано с кардинальной переделкой двигателя и увеличением его массы. Однако есть еще один путь - попытаться "загнать" в камеру сгорания как можно больший объем топливовоздушной смеси. В обычных условиях этот объем ограничен атмосферным давлением, следовательно надо это давление повысить!
Для этих задач служит "турбина" или правильнее турбокомпрессор ( турбонагнетатель).

Виды нагнетателей

Справедливости ради надо сказать, что первыми появились механические нагнетатели (kompressor, supercharger), которые приводятся в действие механической энергией вырабатываемой двигателем.
Различают несколько типов механических нагнетателей:
- центробежные, наиболее похожие на турбонаддув, поскольку воздух засасывается центробежной крыльчаткой;
- нагнетатели типа "Рутс"(Roots), в котором воздух нагнетается двумя роторами, как в маслонасосе;
- винтовые нагнетатели (Lysholm), по принципу похожие на Roots, но вместо двух роторов с лопастями применены винтовые роторы;

Механический компрессор
Компрессор Рутса

Механический компрессор
Компрессор Лисхольм

Механический компрессор
Центробежный компрессор

Плюсы механических нагнетателей:
- начинают работать сразу, как только начинает работать двигатель - нет турбоямы;
- прямая связь с оборотами двигателя - мгновенный отклик на нажатие педали газа;
- отличная тяга на "низах";

Минусы механических нагнетателей:
- весьма существенно отнимают мощность у мотора (до 20%);

Есть и "электрический наддув" (электрокомпрессор), когда приводом компрессора служит электродвигатель. Но как правило такие нагнетатели устанавливаются не автономно, а в паре с турбонагнетателем.

Электрический компрессор
Электрический нагнетатель

Плюсы электрических нагнетателей:
- можно настроить программу оборотов под любой режим работы ДВС - нет "провалов";

Минусы электрических нагнетателей:
- для обеспечения требуемого потока воздуха необходим мощный электродвигатель, который потребляет много энергии;

Поскольку и у механических и у электрических нагнетателей есть один, но существенный минус - они требуют много дополнительной энергии для работы, то наибольшего распространения получили турбонагнетатели с приводом от выхлопных газов (турбокомпрессоры), которые такого недостатка лишены.
Турбокомпрессор приводится в движение отработанными газами, которые все равно "выбрасываются" наружу.

Турбокомпрессор в разрезе:

Турбокомпрессор

Плюсы турбокомпрессоров:
- нет потери мощности ДВС;

Минусы турбокомпрессоров:
- задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма;
- резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.
- воздух в турбокомпрессоре сильно нагревается, для его дальнейшего использования необходимо дополнительное охлаждение;
- требуется более качественное масло и более частая его замена;

Принцип работы турбокомпрессора

ТУРБОКОМПРЕССОР - Это лопастная машина, позволяющая использовать энергию выхлопных газов для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания - наддува.

В своей работе турбокомпрессор использует энергию отработавших газов. Эта энергия вращает турбинное колесо которое связано, через вал ротора с компрессорным колесом. Компрессорное колесо сжимает воздух и нагнетает его в цилиндры.

Фактически компрессорная часть турбомотора – это рассмотренный выше центробежный нагнетатель, только приводится в действие он энергией газов. Скорость вращения газовой турбины очень высока (до 200 000 об/мин)

Принцип работы турбокомпрессора

В процессе работы турбина и воздух проходящий через неё сильно нагревается. Это происходит как за счет сжатия воздуха, так и за счет высокой температуры отработанных газов. (Нагрев выхлопных газов в бензиновом моторе может достигать 1000°С)
Приходится охлаждать и саму турбину - подводя масло и охлаждающую жидкость, и выходящий воздух - для этого ставят интеркулер.

 

Виды турбокомпрессоров

Турбина с перепуском отработавших газов WGT.

Турбокомпрессор

В горячей улитке турбокомпрессора есть клапан Вестгейт (wastegate) выпускающий выхлопные газы в обход ротора турбины, для того чтобы ограничить рост давления турбокомпрессора выше заданного значения. Вследствие этого поток газов через турбину уменьшается, что снижает как степень сжатия воздуха турбиной, так и излишне высокие обороты вращения вала турбокомпрессора. При низких нагрузках на двигатель клапан закрывается, и весь поток отработавших газов направляется в турбину.

Турбина с изменяемой геометрией турбины VNT.

Турбокомпрессор

Турбина с изменяемой геометрией ТИГ (Variable-Nozzle Turbine - VNT, Variable-Turbine Geometry - VTG, Variable-Geometry Turbo - VGT) отличается от классических турбокомпрессоров наличием кольца из специальных лопастей (лопаток). Это дает возможность управлять потоком отработанных газов через турбину.
На малых оборотах двигателя лопатки находятся в полузакрытом состоянии. Выхлопным газам приходится "протискиваться" в узкие проходы между лопаток. Скорость газа возрастает (закон Бернулли) и он быстрее раскручивает турбину.
На повышенных оборотах двигателя лопатки открываются. Сечение для прохода газов увеличивается, скорость падает, турбина крутится медленнее.

Турбина с дросселированием VST.

Турбокомпрессор

В двигателях легковых автомобилей небольшой мощности нашли применение турбины с золотниковым регулированием (VST Variable Sliding Turbine). Турбина VST работает аналогично турбине с неизменной геометрией, с той разницей, что первоначально открывается один из двух каналов золотника. При достижении максимально допустимого давления наддува золотник, непрерывно перемещаясь в осевом направлении, открывает второй канал. Каналы выполнены так, чтобы наибольшая часть потока отработавших газов направлялась к турбине. Оставшаяся часть отработавших газов, за счет дальнейшего перемещения регулирующего золотника, направляется в обход крыльчатки компрессора внутри турбонагнетателя.

Турбина с Twin-scroll (Твинскролл ) – двойная улитка.
Турбина типа "twin-scroll" отличается от обычной наличием двух каналов, разделяющих надвое рабочую камеру турбины. Таким образом, отработавшие газы подаются на турбину раздельно, за счет чего эффективнее используется импульсный наддув.

Твинскролл

За счет чего достигается преимущество?
На четырехтактном двигателе порядок работы цилиндров (например у ЗМЗ-409) 1-3-4-2. Представим, что цилиндр 1 заканчивает свой цикл и достигает нижней точки, открывается выхлопной клапан. В то же время, цилиндр 2 заканчивает выхлопной цикл, закрывая выхлопной клапан и открывая впускной клапан. При наличии обычной одиночной турбины, давление выхлопа от цилиндра 1 будет препятствовать забору воздуха цилиндра 2, поскольку оба выхлопных клапана открыты. Так вот, если камеры разделить, проблема разрешится.
Вдобавок, в последнее время появились турбины с изменяемым Twin-scroll: на входе улитки турбины установлен распределительный клапан (Quick Spool Valve), который перенаправляет поток выхлопных газов в разные каналы. А если учесть, что у разных каналов разная геометрия то мы фактически получаем универсальную, управляемую турбину, которая хорошо работает и на низких и на высоких оборотах двигателя.

Твинскролл
Твинскролл турбокомпрессор Borg Warner EFR-7163-J (VTV) с интегрированным QSV клапаном (с изменяемой геометрией)

 

Устройство турбокомпрессора.

Турбокомпрессор

Конструктивно турбокомпрессор состоит из 3-х основных элементов:
- компрессор (компрессорное колесо и корпус компрессора)
- турбина (корпус турбины и турбинное колесо)
- корпус подшипников

1 - компрессорное колесо - выполнено из алюминиевых сплавов методом литья, на некоторых моделях крыльчаток, для очень тяжелой и продолжительной работы при больших температурах, лопасти изготавливаются из титана. Точные размеры лопастей крыльчатки и точная механическая обработка важны для нормальной работы компрессора. Расточка и полирование повышает коэффициенты сопротивления усталости. Крыльчатка расположена на сборке вала. Основные требования: высокое сопротивление усталости, растяжению, коррозии;

2 - подшипник скольжения - изготовлен из специально разработанных бронзовых или медных сплавов. Специально разработанный производственный процесс предназначен, чтобы создать подшипники с необходимыми качествами термостойкости и износостойкости.
Между наружной поверхностью подшипников и посадочной поверхностью подшипников в корпусе также имеется зазор, заполненный маслом. Этот зазор играет роль демпфера при радиальных смещениях ротора в подшипниках.
Подшипники могут свободно вращаться в корпусе подшипников или зафиксированы в нём от вращения специальным элементом - фиксатором.
Осевое перемещение ротора ограничивается упорным подшипником, состоящим из собственно упорного подшипника, закреплённого в задней стенке компрессора, и двух стальных упорных шайб, закреплённых на валу ротора. Упорный подшипник изготавливается из бронзы или из спечённого материала на основе бронзографита.
Масло в подшипники подаётся под давлением из системы смазки двигателя через штуцер на корпусе подшипников и сливается через специальное отверстие в картер двигателя.
Недостаточное поступление масла в подшипники ротора приводит к мгновенному задиру подшипников. Затруднённый слив масла из корпуса подшипников приводит к заполнению внутренней полости корпуса маслом и выдавливанию его через уплотнения ротора в компрессор и турбину.

3 - пневмопривод перепускного клапана - управляет перепускным клапаном, для ограничения давления наддува и защиты двигателя от перегрузок.

4 - масляные каналы;

5 - турбинное колесо - установлено в корпусе турбины и соединено с валом, который вращает крыльчатку компрессора. Покрыто никелевым сплавом. Сделано из прочных и стойких сплавов. Выдерживает температуры работы до 900 °C. Основные требования: стойкость к изнашиванию, к деформациям, к коррозии;

6 - вал ротора;

7 - корпус (улитка, хаузинг) турбины - изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины. Основные требования: ударопрочность, стойкость к окислению, жаропрочность, жаростойкость, легкость механической обработки;

8 - корпус (улитка, хаузинг) компрессора - отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Применяют как вакуумное литье так "песочное" литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины. Основные требования: прочность к ударным и механическим нагрузкам, высокое качество обработки и точные размеры;

9 - корпус подшипников - служит для крепления корпусов компрессора и турбины и для размещения подшипников ротора. Ротор вращается в подшипниках скольжения (чаще всего это бронзовые или алюминиевые втулки) с очень большой скоростью, до 200,000 оборотов/минуту.
Имеет сложную геометрическую конструкцию для охлаждения. Основные требования: качество обработки, жесткость, термостойкость;

10 - перепускной клапан - управляемый пневматическим приводом, при определенной величине давления наддува направляет часть отработавших газов в обход турбины, тем самым ограничивает давление наддува ДВС. Ограничение давления наддува осуществляют с целью защитить двигатель от перегрузки;

Несколько слов о подшипниках турбины.
Турбины со втулочными подшипниками были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще.

подшипниках турбины

Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Из мира автоспорта к серийным автомобилям постепенно приходят керамические подшипники качения, они надежнее, долговечнее и не боятся потери давления масла.

Что еще необходимо турбомотору

Кроме турбокомпрессора для нормальной работы турбомотора нужен интеркулер. Он охлаждает излишне горячий воздух перед поступлением в цилиндры. Интеркулер очень похож на радиатор охлаждения ДВС, только сечение трубок здесь намного больше.

Турбокомпрессор

Блоу-офф (Blow-off) и Байпас (Bypass) клапаны. Они ставится зеркально вестгейту. Если перепускной клапан вестгейт управляет отработанными газами, то Байпас и Блоу-офф управляют воздухом наддува. Их задача "стравить" избыточное давление во впускном коллекторе при резком сбросе газа. Единственное их различие, что делают это они по разному: Блоу-офф выбрасывает лишний воздух наружу, а Байпас направляет избыток воздуха обратно во впускной коллектор.

Турбокомпрессор
Байпас клапан

 

Турбокомпрессор
Блоу-офф клапан

Для увеличенного потока воздуха требуется более производительный воздушный фильтр. Часто применяют фильтр "нулевого сопротивления".
И конечно же нужна мелочевка: патрубки, хомуты, уплотнители, крепеж и т.д.

Набор для установки турбины

 

Можно ли установить турбину на обычный мотор?

Можно!
Только вот переделка будет не всегда оправдана экономически, судите сами - кроме правильно подобранной турбины вам придется приобрести и сделать очень много действий.

Допустим, вы решили, что не будете менять поршневую группу в моторе, не будете усиливать блок ДВС, но свечи зажигания поменять придется - ведь старые рассчитаны на совсем другой режим работы. Так же придется поменять форсунки на более производительные. Замена форсунок повлечет замену бензонасоса, на более производительный.

Новые режимы работы двигателя потребуют полной модернизации его программы управления. Так, что "мозги" придется прошивать.
Датчик расхода воздуха на таких режимах долго не живет, его нужно заменить на датчик абсолютного давления (ДАД), причем рассчитанный на избыточное давление.

Необходимо определиться с системой охлаждения турбины - будет ли она только масляной или комбинированной масло + ОЖ. Соответственно надо врезать и протянуть новые масломагистрали (а может и патрубки ОЖ).
Для прокачивания масла по выросшей в объеме маслосистеме нужен более производительный маслонасос.

Впускной и выпускной коллектор придется поменять на такие, которые рассчитаны на работу с турбокомпрессором.

А еще придется ездить на более высокооктановом бензине, более хорошем масле и чаще его менять.
Стоит ли овчинка выделки?

Плюсы и минусы турбомотора

В плюсе - понятное дело: увеличение мощности мотора, улучшение динамики машины и снижение вредных выбросов за счет более полного сгорания смеси. К плюсам можно отнести и более устойчивую работу двигателя в условиях высокогорья.

Но за эти плюсы придется очень многим заплатить (минусы):

Увеличенный расход топлива. При равных объемах, двигатель с турбонаддувом будет потреблять больше топлива примерно на 20%, но и выдавать лошадиных сил на 70% больше.

Ресурс турбодвигателя. Увеличение мощности двигателя при таких же массово-габаритных показателях, приводит к повышенному износу основных узлов. Результатом этого является уменьшение ресурсных возможностей двигателя.

Масляное голодание. Снижается устойчивость к износу поршневой группы. Этому способствует то, что возрастает давление со стороны картерных газов. При работе продолжительное время в таких условиях может возникнуть «масляное голодание». Оно в свою очередь может привести к поломке турбокомпрессора. Ресурс самой турбины так же невелик 100-150 тыс.км.

Турбояма и турбоподхват. Турбояма возникает когда резко нажимают на педаль газа, а турбина еще не успела набрать обороты. Турбоподхват возникает сразу после прохождения турбоямы, когда резко увеличивается давление выхлопных газов, что ведет к перегреву турбины.
Существует несколько способов решения данной проблемы: применение турбины с изменяемой геометрией; использование двух параллельных турбонагнетателей; использование двух последовательных турбонагнетателей; комбинированный наддув.

Качественное топливо и масло. Заправлять топливо придется только высокого качества, в противном случае турбина может очень быстро умереть. Помимо этого, использование турбины предполагает наличие моторных масел особых сортов, которое вдобавок придется в два раза чаще менять. Так же высокие требования предъявляются и к воздушному фильтру, который тоже придется менять гораздо чаще.

Дорогостоящий ремонт и обслуживание. Конструкция и устройство турбины довольно сложны и применяются там только качественные материалы, поэтому и стоимость их не маленькая.

 

Кроме этих минусов, есть ещё особенности в управлении двигателем:

Запуск турбодвигателя при низкой температуре. Запускать турбодвигатель при низкой температуре рекомендуется с предварительной прокруткой. Сначала стартером делаются 2 – 3 короткие прокрутки, после чего производится запуск турбодвигателя на холостых оборотах. Предварительная прокрутка позволяет запустить циркуляцию масла в двигателе и начать постепенное заполнение системы маслом, что предотвратит масляное голодание.

Выключение двигателя с турбиной (термоудар) Главным «врагом» турбины является так называемый «термоудар». При движении на высоких скоростях число оборотов турбины составляет более 100 тыс. об/минуту. При этом сама турбина, естественно, сильно нагревается. Охлаждение турбины происходит с помощью масла, циркулирующего в самом устройстве. Если охлаждающий поток масла вместе с остановкой двигателя резко остановится, то турбина перегреется и выйдет из строя. Поэтому после больших нагрузок, перед остановкой, турбомотору надо какое то время поработать на холостом ходу.

Работа турбомотора на холостых оборотах. Долгая работа турбированного двигателя на холостых может привести к протечкам масла в местах соединений. В данной ситуации давление масла в турбине гораздо выше чем давление подаваемого воздуха, что способствует протеканию масла через соединения, это будет заметно по характерному синему цвету выхлопа. Масло будет оседать на элементах турбины в виде нагара, что по мере пробега скажется на ее ресурсе.

Характеристики турбины:

A\R корпуса турбины — Аббревиатура «A/R» (от англ. «Area/Radius», т. е. «площадь/радиус») служит для описания геометрической характеристики корпусов компрессора и турбины. Это отношение площади сечения впускного (или выпускного, в случае с корпусами компрессора) канала к расстоянию от центра вала турбины до центра сечения этого канала (радиус).

Характеристика A/R корпуса компрессора

Соблюдается соотношение A1 / R1 = A2 / R2 = A3 / R3 = A4 / R4 = A5 / R5 = A6 / R6

Параметр A/R по-разному влияет на производительность компрессора и турбины.

A/R компрессора – производительность компрессора сравнительно слабо зависит от изменения параметра A/R. Корпуса с большим значением A/R иногда применяются для оптимизации производительности систем с низким уровнем наддува, а корпуса с меньшим значением A/R применяются для систем с высоким уровнем наддува. Однако в связи с тем, что влияние A/R на производительность компрессора не велико, значение A/R у большинства компрессорных корпусов почти не отличается.

A/R турбины – производительность турбины находится в сильной зависимости от изменения параметра A/R, поскольку он определяет пропускную способность крыльчатки турбины.
При меньшем значении A/R повышается скорость отработавших газов, направляемых в турбинное колесо. Это способствует увеличению отдачи турбины на малых оборотах двигателя, что позволяет ускорить реакцию турбины на повышение оборотов. Однако при небольшом значении A/R воздух попадает в крыльчатку турбины по более пологой траектории, что уменьшает максимальную пропускную способность турбинного колеса. В результате возрастает противодавление отработавших газов, а это приводит к ухудшению "продувки" двигателя на максимальных оборотах и негативно сказывается на пиковой мощности двигателя.
При большем значении A/R, напротив, скорость потока выхлопа снижается, а реакция турбины на повышение оборотов замедляется. В корпусе с большим значением A/R поток входит в крыльчатку турбины по более радиальной траектории, и эффективная пропускная способность крыльчатки возрастает, что приводит к снижению противодавления выхлопа и повышению мощности двигателя на высоких оборотах.

Индюсер (Inducer) – это диаметр той части колеса крыльчатки, в которую воздух входит.

Эксдюсер (Exducer) – диаметр крыльчатки, откуда воздух выходит.

Trim этим термином обозначается соотношение площадей индюсера и эксдюсера компрессорного или турбинного колеса.

Trim рассчитывается по формуле: Trim = ( inducer² / exducer² ) * 100

Например, для Garrett GT2860R имеется компрессорное колесо с эксдюсером 60,0 мм и индюсером 47,0 мм.
Значит Trim = ((47*47) / (60*60)) *100 = 61,3

От Trim крыльчатки турбины и компрессора зависит ее производительность. Чем больше значение Trim, тем больший поток воздуха проходит через крыльчатку за единицу времени, и тем больше воздуха будет поступать в цилиндры двигателя.

Характеристики стандартного турбокомпрессора собираются в единый график, который называется турбокарта. Каким образом читать турбокарты смотрите в отдельной статье.

Термины

ТУРБИНА — представляет собой двигатель, для поддержания работы которого необходима энергия рабочего тела, которым может быть газ, вода или пар. Турбокомпрессор использует турбину для преобразования кинетической энергии пара в механическую, или крутящий момент, который передается компрессору через общий вал.

ТУРБОКОМПРЕССОР — является основным элементом турбокомпрессорного двигателя, который состоит из турбины и компрессора. Эти два основных элемента связаны общим валом, что позволяет турбине раскручивать колесо компрессора. Турбокомпрессоры применяются для наддува поршневых двигателей.

ТУРБОНАДДУВ — процесс увеличения объема подаваемого воздуха в цилиндры, производящийся с помощью турбокомпрессора.

КОМПРЕССОР — агрегат, забирающий внешний воздух, и сжимающий его для дальнейшей передачи в цилиндры силового агрегата

ИНТЕРКУЛЕР — он же "кулек" — агрегат, основная задача которого – охлаждать сжатый воздух перед его попаданием в цилиндр силового агрегата. В процессе сжатия, воздух неизбежно нагревается, что увеличивает его объем. Это может привести к потере мощности двигателя.

ВЕСТГЕЙТ — ( wastegate, actuator)
Клапан между выпускным коллектором и выхлопной трубой (параллельно турбинной части агрегата турбонаддува), пускающий выхлопные газы в обход турбинной крыльчатки. Этим ограничивается рост наддува выше заданного значения.

BLOW-OFF (BOV) — это клапан сброса избыточного давления. Он бывает двух типов открытого (сброс происходит в атмосферу) и замкнутого, байпасного, (сброс происходит обратно в систему). Наличие его в системе крайне полезно и можно сказать необходимо так как сбрасывая избыточное давление он гасит волны противофаз возникающие при закрытии дроссельной заслонки тем самым сохраняет жизнь турбинам. Сброс воздуха в атмосферу через блоу офф (Blow Off) сопровождается приятным звуком (ну тот самый "анн тссс"). Звук зависит от конструкции клапана: свистящий, пшикающий, шипящий. Громкость зависит от уровня наддува. При использовании клапана блоу офф фактором нагрузки должен служить датчик абсолютного давления. При датчике массового расхода воздуха возможны сбои в работе двигателя.

ТУРБО-ЯМА — Серьезным камнем преткновения стала так называемая "турбояма" (turbolag). При сбросе оборотов двигателя снижается скорость истечения выхлопных газов – и сразу же падают обороты турбины. При повторном нажатии на педаль газа турбине требуется какое-то время (порой до двух-трех секунд), чтобы вновь выйти на прежние обороты – ведь турбина не имеет такой жесткой связи с двигателем, как механический нагнетатель. Из-за этого пилотам спорткаров приходилось сбрасывать обороты двигателя еще на подходе к повороту, а при входе в вираж резко газовать, чтобы уже на выходе получить максимальную тягу. Требовалась интуиция и колоссальный опыт, чтобы точно работать с педалью газа. Не рассчитаешь момент сброса оборотов или подгазовки – потеряешь время или попросту улетишь с трассы.

BOOST — это избыточное давление, которое надувает турбина, у разных турбин и разных конфигурациях мотора, буст варьируется, чем больше буст, тем больше ЛС! В стандартных моторах турбина обычно дует где-то 0,4-0,5 бара.

BOOST-UP — В процессе принудительного закачивания воздуха в двигатель, количество которого при этом ещё больше увеличено, взрывная сила повышается, тем самым, увеличивая выходную мощность мотора.

OVER-BOOST — предназначен для увеличения давления газа в турбине, выше допустимых значений. Это необходимо, когда водитель резко нажимает на педаль газа, для быстрой раскрутки лопастей турбины.

FREE-BOOST — В общем случае, давление наддува регулируется и удерживается не выше заданного уровня путем слива части выхлопных газов мимо турбины при помощи вэйст гейта (waste gate).
Вэйст Гейт (нормально закрытый клапан — т.е. все выхлопные газы идут на турбину) приводится в действие актуаторами, получающими управляющее давление из отвода впускного коллектора перед дросселем.
В случае, если актуаторы сломаны или управляющее давление на них не поступает (забиты трубки, не закрывается соленоид, стравливающий давление в ненаддутый впуск, негерметичны управляющие трубки и т.п.) полный объем выхлопных газов поступает на рабочее колесо турбины вне зависимости от их количества и оборотов двигателя. Как следствие — турбины крутятся без ограничений т.е. свободно (free) отсюда — free boost — т.е. неограниченный наддув.

БУСТ КОНТРОЛЛЕР — (от англ. boost — повышение) — прибор для управления наддувом на турбированном автомобиле. Основное достоинство, что можно установить требуемое давление наддува, и с такой же вернутся к штатному. Он управляет байпасным (защитным) клапаном во впускном коллекторе и служит для кратковременного повышения давления нагнетаемого воздуха. Буст контроллер "зажимает" байпасный клапан и не дает ему стравить излишки воздуха из впускного коллектора. Это позволяет увеличить мощность и крутящий момент при высоких оборотах двигателя.

БАЙПАС — (Bypass, BPV) Байпас, или перепускной клапан. Клапан между впускным патрубком до компрессорной части агрегата турбонаддува и впускным патрубком после оного (т.е. параллельно его компрессорной части). Служит в основном для снижения шума впуска и некоторого снижения резонансных явлений при резком закрытии дроссельной заслонки. На многих серийных машинах не устанавливается вовсе. Зачем же нужен этот самый байпас? Всё очень просто — в момент резкого закрытия дросселя (при отпускании педали газа) много воздуха в цилиндры уже не требуется, но лопатки компрессора, по инерции, продолжают вращаться с высокой угловой скоростью - получаем избыток воздуха которому некуда деваться. Этот воздух идет в противоход вращению крыльчатки, в результате чего возможно повреждение элементов ротора турбины.

ПАЙПИНГ — это впускной трубопровод. Он часто выполнен в виде турбы. (от англ. слова Pipe — труба)

ДАУНПАЙП — По простому, приемная труба от турбины. (а-ля штаны)

ТУРБОТАЙМЕР — При больших нагрузках подшипники турбины подвергаются «пытке» высокой температурой, а охлаждаются циркулирующим при работе двигателя маслом. При выключении мотора прекращается и циркуляция масла, и если это случится сразу после интенсивной работы, детали турбонагнетателя не успеют охладиться, что может привести к их деформации и даже выходу из строя. Конечно, можно самому сидеть в машине минуту-другую, ждать, пока турбонагнетатель остынет. Но если вам дорого время, лучше все же поставить турботаймер, который автоматически выключит двигатель после заданного вами времени работы на холостом ходу.

Twin-turbo и Bi-turbo — Установка сразу двух турбин на двигатель.
Twin Turbo («турбины-близнецы») технология, при которой выхлопные газы разделяются на два равных потока и распределяются на две одинаковые турбины малого размера. Это позволяло получить лучшее время отклика, а иногда и упростить конструкцию мотора, используя недорогие турбокомпрессоры, что очень актуально для V образных двигателей с выхлопными коллекторами «вниз».
Biturbo («двойная турбина») конструкция, в которой применяется две последовательно подключенные ко впуску турбины: маленькая и большая. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.

ХАУЗИНГ (housing) — так называют части корпуса (улитка) турбины. Поскольку у турбокомпрессора две улитки, соответсвенно есть два housing - "горячий" (turbine housing) и "холодный" (compressor housing).

Quick Spool Valve (QSV) — клапан быстрого спула. Клапан, который установлен на входе горячей турбины и может регулировать поток отработанных газов.

VARIABLE FLOW TURBOCHARGER — Турбина с изменяемой геометрией (применительно к турбинам twin scroll). Это турбина с двумя каналами в горячей улитке, где на входе установлен Quick Spool Valve. Причем каналы улитки имеют разную геометрию A/R. Направляя потоки отработанных газов в разные каналы удается добиться высоких оборотов турбины даже при неоптимальных оборотах двигателя.

Турбина twin scroll с изменяемой геометрией

См. так же:
Как читать турбокарты
Выбор турбокомпрессора для УАЗ Патриот, пример
Книга: Maximum Boost. Турбонаддув. Корки Белл.
Методы расчета массового расхода воздуха и давления наддува для турбокомпрессоров Garrett (на английском)
Турбодизель ЗМЗ-5143.10
Турбодизель ЗМЗ-51432.10 CRS

наверх

Top.Mail.Ru



Дизайн © 1999- Уазбука. О сайте

info@uazbuka.ru


Клуб УАЗоводов Фотогалерея УАЗБУКИ Форум УАЗБУКи Руководства, справочные материалы об УАЗ Каталог деталей УАЗ